
ICT159 Lecture Notes Topic 3 – Page 1

Topic 3 – Selection
DECISIONS, DECISIONS

 Remember that algorithms can only do three things:
 Sequence
 Selection
 Iteration

 We first introduced the concept of selection in Topic 1 and said that
it was important because it allows algorithms to make choices and
perform differently under different inputs.

 We're now going to talk about selection in more detail and show

how to use it in writing algorithms and programs.

ICT159 Lecture Notes Topic 3 – Page 2

BOOLEAN LOGIC
Boolean Data
 You might remember from Topic 1 that selection-based expressions

that make up an algorithm “decide” what to do based upon the truth
or falsity of some expression.

 Most of the expressions you will have seen so far involve

computation, often arithmetic.
 For example: a = b * 5

 If we assume that a and b are both integers then this expression will

have an integer result.
 As we've seen in the previous topic, the type of a piece of data is

very important when writing a program (although it's also important
to consider when developing algorithms).

 So what type is the result we get from an expression that relates to

truth or falsity?

 In computer science we call data with a true or false result boolean

after mathematician George Boole.

 While integers can store any whole number value (within extensive

limits), boolean data can only store the value TRUE or the value
FALSE.

ICT159 Lecture Notes Topic 3 – Page 3

Boolean Data in Programming
Languages
 Different languages deal with boolean data slightly differently.

 Some languages, like Java, actually have a specific data type for

boolean data.

 Others like C just treat boolean data as an integer (generally an

int).

 In C if the integer expression has the value zero then this means

false, otherwise it means true.

 We'll talk about this more a little later and give some examples.

ICT159 Lecture Notes Topic 3 – Page 4

Relational Operators
 Just as there are arithmetic operators that give numeric results, there

are also operators that give boolean results.

 These are very important in writing selection logic for algorithms

since they define how the selection statement makes its decision.

 Relational operators work on different types of data, primarily

numeric data.

 So although relational operators don't work with boolean data, they

produce boolean results, i.e., either true or false.

 For the table below assume that a and b are integers but they can be

virtually any simple data type.

Operator Example Description

< a < b Is a less than b?

<= a <= b Is a less than or equal to b?

> a > b Is a greater than b?

>= a >= b Is a greater than or equal to b?

== a == b Is a equal to b?

!= a != b Is a not equal to b?

Notice how although the two operands a and b are integers, the
relational operators cause the expression to have a boolean (true/false)
result.

ICT159 Lecture Notes Topic 3 – Page 5

Boolean Operators
 Although relational operators are used to produce boolean results

that can be used in selection statements, they don't actually operate
on boolean data.

 However, there are several operators that can be applied to these

boolean results to form very sophisticated boolean expressions.

 For many simple expressions these are not needed but sometimes

they are essential for constructing the appropriate logic.

 Just as an arithmetic operator (such as +) can be applied to two

items of numeric data to produce a numeric result, these boolean
operators can be applied to two items of boolean data to produce a
result.

 There are four boolean operators and these are:

 AND
 OR
 XOR
 NOT

We will now consider each of these.

ICT159 Lecture Notes Topic 3 – Page 6

AND
 Firstly it is important to remember that:

 Boolean data can only be true or false.
 Therefore a boolean expression can only have a true or false

result.

 The boolean AND operation produces a true result only if both its

boolean operands are true.

 You can read this as:

x AND y gives true, if and only if x is true and y is true.

 We can use a device called a truth table to show the behaviour of
the AND operation:

a b a AND b

0 0 0

0 1 0

1 1 1

1 0 0

 When reading this table, remember that zero means false and one

means true.

 You should not memorise this table but you should be able to

understand it such that you could re-generate it for yourself.

ICT159 Lecture Notes Topic 3 – Page 7

OR
 The boolean operator OR produces a true result if either of its

operands is true.

 You can read this as:

x OR y gives true if either x is true or y is true or
both are true.

 Here is the truth table for OR:

a b a OR b

0 0 0

0 1 1

1 1 1

1 0 1

ICT159 Lecture Notes Topic 3 – Page 8

XOR
 XOR is slightly trickier and is not used in logical boolean

expressions but it is covered here for completeness.

 XOR gives a true result when one and only one of its operands is

true.

 You can think of this as:

x XOR y gives true if either x is true or y is true but
not both are true.

 Here is a truth table for XOR:

a b a XOR b

0 0 0

0 1 1

1 1 0

1 0 1

 XOR means “exclusive OR” because only one of its operands can

be true but not both.

ICT159 Lecture Notes Topic 3 – Page 9

NOT
 Unlike the previous boolean operators which have two operands,

NOT only has one.

 NOT is the complementary operator in that it will give the opposite

of whatever its operand is.

 If the operand is true then the result will be false and if the operand

is false then the result will be true.

 Here is a truth table for NOT:

x NOT x

0 1

1 0

 In other words, NOT simply reverses the value of whatever boolean

expression is given.

ICT159 Lecture Notes Topic 3 – Page 10

Boolean Operators in Programming
 So far we have been using the English words “AND” and “OR” etc.

to represent the boolean operators.
 However, most programming languages (including C) use a

shorthand notation for these.

 The following table describes this shorthand:

Operator Example Means

&& a && b a AND b

|| a || b a OR b

! !a NOT a

In your algorithms you can use the words, e.g., AND.

Note that there is no boolean XOR operator in most languages,
including C. There is a bitwise XOR operator but this does something
quite different.

ICT159 Lecture Notes Topic 3 – Page 11

Using Boolean Logic
 Now we have a set of relational operators that produce boolean

expressions and logical boolean operators to process these results.
 So how is this useful?

 Essentially we can combine these to produce expressions for any

particular selection logic we require.

 For example, we have a value called score and we need to find out

if that score is between 80 and 100.
 Using the relational and boolean operators we can produce an

expression which will be true if this is the case:
 The two expressions below are the same except the second one uses

C syntax.
score >= 80 AND score <=100

(score >= 80) && (score <= 100)

 Another example might be if we want to check whether a user

wishes to proceed with some operation in a program.
 If the user enters 'y' or 'Y' then we want to proceed so we can write

the following boolean expression:

response == 'y' OR response == 'Y'

(response == 'y') || (response == 'Y')

 If this expression is true then the user wants to proceed.

 However, being able to produce these expressions is no use if we

can't do something as a result.
 So we will now look at some selection constructs that exist within

the C language.

ICT159 Lecture Notes Topic 3 – Page 12

IF STATEMENTS
A Basic If Statement
 The principal selection construct in the C language is the if

statement.

 The basic version of the if statement allows the program to execute
a particular block of code if some boolean expression is true.

 Once this block of code has finished executing then the program
continues on with the rest of the code.

 If the expression is not true then the conditional block is skipped
and execution continues as above.

 The flow chart opposite

illustrates this behaviour:

The general syntax in C for a
basic if statement is

if(condition)

{

 ...

 ...

}

/* Execution

 continues here

*/

Is condition
true?

statement
block

Yes No

ICT159 Lecture Notes Topic 3 – Page 13

Basic If Example
 Remember the “menu” algorithm example from Topic 1:
print "you have 3 choices"

print "enter a for option 1"

print "enter b for option 2"

print "enter c for option 3"

response <-- keyboard input

if response == 'a'

 print "You have selected option 1"

if response == 'b'

 print "You have selected option 2"

if response == 'c'

 print "You have selected option 3"

The part with the red bracket around it is obviously the pseudocode
that will be implemented with an if statement.

 Assuming the existence of a variable called response of type char
which holds the user's menu selection, the following is the C code to
implement this part:

if(response == 'a')
{
 printf(“Your have selected option 1”);
}

if(response == 'b')
{
 printf(“You have selected option 2”);
}

if(response == 'c')
{
 printf(“You have selected option 3”);
}

ICT159 Lecture Notes Topic 3 – Page 14

There are some important things to note about this code:

 Firstly the use of the == relational operator.
 This is a test for equality, that is it tests to see whether the two

operands are equal in value.

 So each of the if statements tests to see whether response is equal
to the appropriate letter.

 A mistake almost every beginner programmer makes is to use the

assignment operator = rather than the test for equality relational

operator ==.
 This has the effect of assigning the value on the right to the

variable on the left and then treating the whole lot as a boolean
expression (zero = false, non-zero = true in C).

 This leads to very strange and hard to diagnose problems in
your code!

 Secondly note the use of single quotes are for the letters like 'a'.

 This tells the C compiler that these are of type char and is
important because this is the same type as response.

 You can only compare variables of the same type.

 Thirdly notice that each if statement is independent from the others.

 If the first one matches then the second (and third) if statements
will still be executed, even though their conditions cannot
possibly be true.

 Clearly this is less efficient than it could be.

 Finally note in this case the curly brackets aren't used after the if

statement to indicate the code to be executed.
 You only need to use these brackets when there is more than one

line to be executed as part of the if statement.
 However, you can still put them in anyway if you like.

ICT159 Lecture Notes Topic 3 – Page 15

Complete C Program
#include <stdio.h>

int main()

{

 char response;

 /* Print menu giving choices */

 printf(“You have three choices.\n”);

 printf(“Enter a for option 1\n”);

 printf(“Enter b for option 2\n”);

 printf(“Enter c for option 3\n”);

 /* Read in user's response */

 scanf(“%c%*c”, &response);

 /* Perform appropriate response */

 if(response == 'a')

 {

 printf(“Your have selected option 1\n”);

 }

 if(response == 'b')

 {

 printf(“You have selected option 2\n”);

 }

 if(response == 'c')

 {

 printf(“You have selected option 3\n”);

 }

 return(0);

}

ICT159 Lecture Notes Topic 3 – Page 16

Problems with this Program
There are a number of problems and limitations with this code.

 Firstly the program assumes that the user will input the letter in

lower case.
 While the program implicitly requests a lower case letter, the user

may accidentally input a capital.
 This is something the program should be able to check for to be

considered reasonably robust.

 Secondly, as noted above, the code is quite inefficient since each of

the conditions is checked independently.
 This is despite the fact they are all mutually exclusive and, if one is

found to match, the others should be ignored.
 The code is therefore both inelegant and inefficient.

 Thirdly notice that there is no default condition.

 If the value of response does not match any of the three tested
then the program will just continue through and do nothing.

 If the user fails to select a valid option then the program should
detect this and output a suitable error message.

 Finally, the program just exits after performing the specified task.

 Although obviously just a demo program that doesn't do anything
useful, in a real menu program you would probably keep
displaying the menu until the user told it to exit.

We will now fix each of these problems (except for the last which will

have to wait for a later topic!)

ICT159 Lecture Notes Topic 3 – Page 17

Using the Boolean Operators
 We already know how to solve the first problem:

 A previous example gave us the answer!

 Using the boolean operators (AND, OR, NOT, etc.) we can

construct a boolean expression to cater for both capital and lower
case inputs using the expression:

response == 'a' OR response == 'A'

So now the code becomes:

if((response == 'a') || (response == 'A'))

 printf(“Your have selected option 1”);

if((response == 'b') || (response == 'B'))

 printf(“You have selected option 2”);

if((response == 'c') || (response == 'C'))

 printf(“You have selected option 3”);

Note the use of an extra pair of brackets to separate each boolean
expression that we are combining.

 We could also use the boolean operator NOT to construct a very

complex expression to test for the default condition:

if(!((response == 'a') || (response == 'A') ||

(response == 'b') || (response == 'B') || (response

== 'c') || (response == 'C')))

 printf(“Not a valid option!\n”);

 But this is complex, ugly and lots of typing – there is a much better
way...

ICT159 Lecture Notes Topic 3 – Page 18

THE IF-ELSE STATEMENT
 The basic if statement is clearly very useful by allowing us to write

programs that can behave differently in different situations.
 However, already we have discovered serious limitations with it.

 A slightly more advanced approach is the if-else statement.

 Unlike the basic if, if-else allows us to not just do something if a

condition is true but also to do something else if it is not true.

Is
condition

true?

statement
block

Yes

No

alternative
statement

block

ICT159 Lecture Notes Topic 3 – Page 19

The basic structure of an if-else statement looks like:

if(condition)

{

 /* This code executed if the condition

 is true and is called the “true clause”

 */

}

else

{

 /* This code executed if the condition

 is false and is called the “false clause”

 */

}

/* Execution continues here */

 Again note that the curly brackets for each block of the if-else
statement are only needed when more than one line of code is
contained in that block:

if((selection == 'y') || (selection == 'Y'))

{

 printf(“You have chosen the affirmative!\n”);

}

else

{

 printf(“You have not chosen the affirmative.\n”);

}

printf(“But you still end up at the same place,

which is here.\n”);

 This gives us a much more flexible construct than a basic if

statement but it alone can't solve our problems with the menu
program.

ICT159 Lecture Notes Topic 3 – Page 20

Nested if Statements
 Part of the problem is that all of the if statements we're using are

independent from one another.
 What we need to do is be able to link these together.

 This involves putting if statements inside other if statements which

is called nesting.

 Basic if statements can be nested, for example:

if(age >= 18)

{

 if(height >= 175)

 {

 printf(“Potential police recruit.\n”);

 }

}

 Notice how this approach allows us to “filter” various conditions.
 Only if the first condition is true will the second condition be tried

and we know if the code is executed that both conditions will be
true.

 This makes this directly equivalent to the boolean AND operator:

if((age >= 18) && (height >= 175))

{

 printf(“You are a potential police

 officer.\n”);

}

 So ultimately nested if statements aren't anything new.

 However, nested if-else statements are very powerful.

ICT159 Lecture Notes Topic 3 – Page 21

Nested if-else Statements
 Nesting if-else statements allows us to link these statements together

which forms a very useful construct.
 We can use this to solve the second and third problems with our

menu program.

Here is the pseudocode for our new solution:
if response is 'a' or response is 'A'

 print "You have selected option 1"

else

 if response is 'b' or response is 'B'

 print "You have selected option 2"

 else

 if response is 'c' or response is 'C'

 print "You have selected option 3"

 else

 print “You haven't selected a valid

 option.”

ICT159 Lecture Notes Topic 3 – Page 22

And in C code:
if((response == 'a') || (response == 'A'))

{

 printf(“Your have selected option 1\n”);

}

else

 if((response == 'b') ||

 (response == 'B'))

 {

 printf(“You have selected option 2\n”);

 }

 else

 if((response == 'c') ||

 (response == 'C'))

 {

 printf(“You have selected option 3\n”);

 }

 else

 {

 printf(“You haven't selected a valid

 option.\n”);

 }

 This solves both our previous problems.

 Nested if-else statements are extremely useful and powerful
technique very commonly used in programming.

ICT159 Lecture Notes Topic 3 – Page 23

SWITCH-CASE STATEMENTS
 You will find nested if-else statements are needed quite often in

writing your algorithms and programs.

 However, they have a disadvantage that if there are many different

conditions that need to be tested for, this involves quite a lot of
typing.

 It is also common for the test conditions to be very, very similar

making a lot of that typing quite redundant and repetitive.
 For example, in the code for our menu system the condition always

began with response ==

 Many languages including C provide a construct called a switch-

case which provides an alternative to nested if-else for certain tasks.
 Although for a small number of conditions if-else is suitable,

switch-case can often save quite a bit of time and typing.

 However, you can only use the switch-case construct when you are

comparing a variable and a constant for equality.
 So a switch-case is far less flexible than an if-else.

ICT159 Lecture Notes Topic 3 – Page 24

Switch-Case Example
Here is the nested if-else example from above converted to a switch-
case:

switch(response)

{

 case 'a':

 printf(“You have selected option 1\n”);

 break;

 case 'b':

 printf(“You have selected option 2\n”);

 break;

 case 'c':

 printf(“You have selected option 3\n”);

 break;

 default:

 printf(“You haven't selected a valid

 option.\n”);

}

Things to note:

 You can put as many statements as you like for each case, although
in the example above there is just one.

 The break statements must be put at the end of each case
otherwise execution will “fall through” to the next case even if the
condition doesn't match.

 If no case matches then the default case is executed.
 However, the default case is optional and, if left out, the switch-

case will do nothing if none of the options match.
 Although the effect is the same, the switch-case is somewhat easier

to read than the nested if-else, particularly if there are many cases.
 There's also a lot less typing involved!

ICT159 Lecture Notes Topic 3 – Page 25

Full Menu Example
Here is a complete example of the menu program using switch-case.
Note the enhancement to the code above to handle capital input.

/* Basic Menu Program in C demonstrating

 switch-case statements.

*/

#include <stdio.h>

int main()

{

 char response;

 /* Print menu giving choices */

 printf(“You have three choices.\n”);

 printf(“Enter a for option 1\n”);

 printf(“Enter b for option 2\n”);

 printf(“Enter c for option 3\n”);

 /* Read in user's response */

 scanf(“%c%*c”, &response);

 /* Perform appropriate response */

 switch(response)

 {

 case 'a':

 case 'A':

 printf(“You have selected option 1\n”);

 break;

 case 'b':

 case 'B':

 printf(“You have selected option 2\n”);

 break;

 case 'c':

ICT159 Lecture Notes Topic 3 – Page 26

 case 'C':

 printf(“You have selected option 3\n”);

 break;

 default:

 printf(“You haven't selected a valid

 option.\n”);

 }

 return(0);

}

 Note how the “fall through” behaviour is used to allow matching
both capital and lower case input.

 This program is now quite complete except it still doesn't solve our

final problem:
 After selecting a single option, the program exits rather than

letting the user go back to the menu to select another option.

 To do this, we need to use iteration which is the next topic.

ICT159 Lecture Notes Topic 3 – Page 27

SUMMARY
 Our code to date has just been sequential, however, selection

constructs allow us to write programs that behave differently
depending on certain conditions.

 We can use the relational operators (like ==, >, != etc.) to construct
boolean (T/F) expressions used to make decisions about what a
program will do.

 We can also combine these boolean expressions with boolean

operators like AND, OR and NOT (&&, || and ! in C) to construct
virtually any boolean logical expressions needed.

 if and if-else statements are used to make simple decisions in C.

 if statements will execute a block of code if a condition is true.
 if-else statements will execute a block of code if the condition is

true and execute a different block if it is false.

 We can nest if-else statements together to build very sophisticated

selection constructs, for example in our menu program.

 However, this involves a lot of typing and so often a switch-case

statement proves easier to write.

